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Introduction 
Pharmacological studies have established the existence of two 
types of κ-opioid receptor (KOR).   One subtype of KOR, κ1, 
binds U69593 with a high affinity, whereas the κ2 subtype 
binds this drug with a low affinity[1].   A naloxone benzoylhy-
drazone sensitive KOR subtype (κ3) has also been proposed 
but not been fully confirmed by sufficient evidence[2–4].   So 
far only KOR1 has been cloned in human and rodents[4, 5].   
KORs are coupled to heterotrimer Gi/o proteins.   Activation 
of KORs leads to an inhibition of adenylyl cyclase through 
the Gα subunit and induces increased potassium channel 
conductance and decreased calcium conductance via the Gβγ 
subunit[6].   Modulation of these ion channels by KORs in 
neurons results in decreased action potential generation and 
neurotransmitter release.   Stimulation of KORs has also been 
shown to activate ERK (extracellular regulated kinase), JNK 
(c-Jun N-terminal kinase), and p38 MAPK (mitogen-activated 
protein kinase) signal transduction cascades[7–13].   Addition-

ally, there is evidence that activation of KORs stimulates 
Na-H exchanger-3 activity via Na+-H+-exchanger regulatory 
factor-1/Ezrin-radixin-moesin-binding phosphoprotein-50, 
independent of pertussis toxin-sensitive G proteins[14].   After 
repeated or sustained exposure to agonists, KORs are desen-
sitized by receptor phosphorylation and recruitment of 
β-arrestin and endocytosed via a clathrin-and dynamin-depen-
dent pathway.   These internalized receptors either return to 
the membrane by dephosphorylation and EBP50/NHERF-1-
dependent recycling or are degraded via both lysosome and 
proteasome systems[15, 16].   G-protein receptor kinase 3 (GRK3) 
and β-arrestin 1/2 play important roles in the modulation of 
KOR trafficking[12, 17].   

KORs are widely expressed throughout the brain, spinal 
cord, and peripheral tissues[7].   High levels of KOR mRNA 
have been detected in the ventral tegmental area (VTA), 
nucleus accumbens (NAc), prefrontal cortex (PFC), hippocam-
pus, striatum, amygdala, locus coeruleus (LC), substantia 
nigra (SN), dorsal raphe nucleus (DRN) and hypothalamus of 
both the rat and human brains[5, 18–20].   These brain areas are  
implicated in the modulation of reward, mood state and 
cognitive function.   KORs are also expressed at several  
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levels of pain circuitry, including areas such as the dorsal root 
ganglia, dorsal spinal cord, rostral ventromedial medulla, 
periaqueductal gray (PAG), sensory thalamus and the limbic 
regions [12, 21–23].   Activation of KORs in vivo produces many 
effects including analgesia, dysphoria, water diuresis, corti-
costeroid elevations, immunomodulation, decreases in pilo-
carpine-induced seizure and associated mossy fiber sprouting 
and hilar neuron loss[16].   KOR agonists have attracted con-
siderable attention for their ability to exert potent analgesic 
effects without high abuse potential[24–27] and antagonize vari-
ous MOR-mediated actions in the brain, including analgesia, 
tolerance, reward and memory processes[28].  

The role of the κ-opioid system in the modulation of 
antinociception and drug addiction 
The κ-opioid system consists of the dynorphin family of 
neuropeptides and KORs[29, 30].   Dynorphins (Dyns) are com-
posed of seven peptides of varying lengths that are formed 
from the precursor prodynorphin (PDyn; see Schwarzer, 
2009[31]).   They are released from the presynaptic terminal of 
depolarized PDyn-containing neurons following sequential 
enzymatic cleavage, mainly by proprotein convertase-2[32, 33].   
The Dyn/KOR system can mediate antinociception and drug 
reward through presynaptic and postsynaptic modulation 
of the levels of several neurotransmitters such as dopamine 
(DA), γ-Aminobutyric acid (GABA) and glutamate[19, 34].   It 
has been well established that the Dyn/KOR system exerts an 
inhibitory effect on brain reward function by suppressing DA 
release from the mesolimbic reward pathway and the nigros-
triatal pathway[4, 35–38].   These brain regions are intimately asso-
ciated with the development of drug dependence.   Numerous 
studies in both nonhuman primates and rats have demon-
strated that κ-agonists functionally attenuate many behavioral 
effects of cocaine, including behavioral sensitization[39, 40] place 
preference[40–42], and self-administration[43–46].   Administration 
of κ-agonists also attenuates the reinstatement of extinguished 
drug-taking behavior in an animal model of relapse[46, 47].   
These inhibitory effects of κ-agonists on cocaine-induced 
abuse-related behaviors are possibly achieved by inhibiting 
the release of DA from dopaminergic neurons[37, 48].  

A role for KORs in pain circuits has been widely described in 
both the central and peripheral nervous systems.   Although it 
has been reported that KOR activation antagonizes MOR-me-
diated analgesia, numerous studies have documented potent 
antinociceptive effects after intrathecal and systemic adminis-
tration of selective κ-agonists[49–52].   Moreover, κ-opioid ago-
nists are free from the abuse potential and adverse side effects 
of µ-agonists such as morphine[24–27].   Additionally, pharma-
cologic studies in KOR and PDyn knockout mice indicate 
important roles for KORs in mediating inhibition of visceral, 
chemical, inflammatory and thermal pain[12, 53, 54].   Peripherally 
selective κ-agonists (including the peptide κ-agonists[55]) act as 
particularly potent analgesics after systemic administration in 
a wide variety of visceral-pain and inflammatory-pain mod-
els as well as in thermal hyperalgesia induced by capsaicin.   
Moreover, the analgesic potency of κ-agonists is enhanced 

under inflammatory conditions[56–61].   Both central and periph-
eral sites of action may contribute to these endpoints[62–64].  

The role of the κ-opioid system in modulation of the 
aversive effects of stress and drug relapse
Although accumulating evidence demonstrates that KOR 
agonists produce potent analgesic effects and suppress drug 
reward, these agonists have also been shown to produce aver-
sive mood and facilitate drug relapse[7].   For example, KOR 
activation produces dysphoria (defined here as an unpleas-
ant or aversive state) in humans[65, 66] and pro-depression-
like behaviors (eg, anhedonia, dysphoria, and anxiety) in 
rodents[67–70].   Moreover, the aversive effects of KOR agonists 
have also been characterized extensively in rodents using 
place conditioning paradigms, where they establish condi-
tioned place aversions (CPAs) after systemic administra-
tion[30, 41, 71–73] or microinfusion into the mesocorticolimbic DA 
system[67, 74].   In addition, stimulation of KORs with selective 
agonist can cause a Dyn/KOR-dependent reinstatement of 
extinguished cocaine CPP (conditioned place preference) or 
drug self-administration[75–78].   These reports suggest that acti-
vation of the Dyn/KOR system is likely to play a major role in 
stress-induced reinstatement and that blockade of KOR recep-
tors with selective antagonists may be a useful and powerful 
therapeutic strategy for protecting individuals from relapse to 
drug abuse.   Furthermore, the fact that KOR function appears 
to have a profound influence on behaviors that are thought 
to reflect motivational and emotional states in animal models 
suggests that KORs might represent a viable target for psychi-
atric medications.   An application of KOR antagonists is in the 
treatment of depressive and anxiety-related disorders, both of 
which are triggered or exacerbated by stress[12].  

Potential therapeutic applications of κ-opioid agonists in 
pain relief and drug addiction treatment 
Potential therapeutic applications in pain relief
Although MOR agonists are still regarded as the gold standard 
to relieve severe pain, their therapeutic utility is limited by the 
tendency to cause addiction following repeated or prolonged 
administration.   Because KOR agonists can exert potent anal-
gesic effects and suppress the drug reward response, they 
were initially expected to be used as non-addictive analgesics.   
However, in clinical trials[51, 56], selective κ-agonists that freely 
enter the central nervous system (eg, ICI199441, enadoline, 
and spiradoline) have been shown to produce unpleasant 
central side effects, such as dysphoria, sedation and diuresis.   
As a result, there has been an attempt to develop peripher-
ally selective κ-agonists[51] and mixed κ/μ-agonists[79–81] in the 
hopes of developing strong analgesics devoid of central side 
effects.   Synthetic κ-agonists, as well as Dyn A, have been 
reported to reduce morphine tolerance in a variety of antinoci-
ceptive tests[80, 82, 83].   Although the endogenous Dyns, Dyn A 
analogs (eg, E2078) and other peptide κ-agonists (eg, CR665 
and CR845) have several advantages such as high activity, 
high specificity and low toxicity, the delivery of peptides as 
therapeutic agents remains a challenge due to their metabolic 
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instability[55].   Currently, peripherally selective κ-agonists 
(including the peptide κ-agonists[55]) are under development 
as new analgesics due to their lack of central side effects such 
as respiratory depression, nausea, sedation, dysphoria, addic-
tion and analgesic tolerance[51, 56].   Nevertheless, none have 
thus far been approved for use as analgesics.   The popular 
analgesics available today are still classical compounds with 
mixed κ- and μ-activity such as pentazocine, butorphanol 
and nalbuphine[81].   Cyclazocine and morphinan derivatives 
are novel κ-agonists with additional μ-activity, which have 
attracted much recent attention for their ability to inhibit anti-
nociceptive tolerance and cocaine-reinforced responding with 
fewer undesirable side effects[79, 80].  

Potential therapeutic applications in the treatment of drug addic
tion 
Drug addiction is a disorder characterized by chronic relapse, 
which is accompanied by the compulsion to seek and take 
the drug, loss of control in limiting intake and emergence of 
a negative emotional state (eg, dysphoria, anxiety, irritability) 
when access to the drug is prevented[84].   The addiction cycle 
is composed of three stages: binge/intoxication, withdrawal/
negative affect and preoccupation/anticipation.   Addition-
ally, the withdrawal symptoms after removal of chronic drug 
administration include signs of physical dependence and neg-
ative emotional state (dysphoria, anxiety and irritability)[84].   
It has been demonstrated that κ-agonists can attenuate opi-
ate withdrawal symptoms both in opiate-dependent animals 
and in humans[28, 53, 55, 82, 85–87].   This attenuation may be due to 
κ-agonists possibly preventing drug withdrawal by inhibiting 
glutamatergic, GABAergic, or noradrenergic transmission in 
brain sites that mediate negative mood states such as the cen-
tral nucleus of the amygdala (CeA) or bed nucleus of the stria 
terminalis (BNST)[4].   

A wealth of studies indicates that κ-agonists can antago-
nize cocaine-induced alterations in behavior and brain 
chemistry[34, 88].   Several studies have demonstrated that 
κ-agonists are effective at decreasing the rate of cocaine self-
administration both in humans and in animal models[43, 46, 47, 89, 90].   
Also, κ-agonists attenuate the development and long-term 
expression of cocaine-induced behavioral sensitization fol-
lowing their repeated, intermittent administration[91].   These 
effects most likely result from the inhibition of limbic DA 
release after acute administration of κ-agonists[34, 88, 92, 93].   How-
ever, there is paradoxical evidence that continuous or prior 
exposure to κ-agonists can potentiate the rewarding effects of 
cocaine under stress conditions and stress-induced reinstate-
ment[36, 94, 95].   This evidence suggests that selective antagonists 
of KOR may represent useful and powerful therapeutic treat-
ments for protecting individuals from relapse to drug abuse. 

A growing number of preclinical studies have demonstrated 
that nonselective κ-agonists with additional activity at MORs 
can decrease cocaine self-administration with fewer side 
effects than highly selective κ-agonists[44, 79, 80, 96–98], indicating 
that mixed-action κ/μ-agonists may have particular utility 
for the treatment of drug abuse.   Taken together, the majority 

of these findings indicate that κ-agonists antagonize both the 
behavioral and neurochemical effects of cocaine.   The admin-
istration of κ-agonists can functionally attenuate behavioral 
effects of cocaine, including CPP, self-administration and 
behavioral sensitization.   These inhibitory effects of κ-agonists 
on abuse-related behaviors are possibly achieved by suppress-
ing DA release.   Additionally, compounds with mixed κ- and 
μ-activity may be more promising candidate pharmacothera-
pies for drug abuse than selective κ-agonists.   However, there 
is evidence that KOR agonists produce aversive mood and 
facilitate drug relapse.   Therefore, further studies are needed 
to confirm the utility of κ-agonists in the treatment of sub-
stance abuse.  

Conclusions and therapeutic perspectives
Data from cell culture, experimental animals and humans 
have provided cellular, neurochemical, and behavioral evi-
dence that KOR activity plays a key role in mediating anti-
nociception, drug withdrawal symptoms and cocaine reward 
responses.   Thus, κ-agonists are likely to become analgesics or 
even anti-addiction drugs without tolerance and dependence 
development following chronic drug exposure.   Moreover, 
for the peripherally selective κ-agonists, their ability to exert 
potent analgesic effects in a variety of visceral pain condi-
tions without presenting central side effects suggest a bright 
drug development future.   Additionally, mixed-action κ-/
μ-agonists may have promising uses for the treatment of pain 
or drug abuse with few side effects.   However, all these pre-
dicted therapeutic applications require further study.  
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